
Python Beginner  

Develop a passion for Learning……



Content
• Introduction 
• Python Syntax
• Python Operators
• datatypes
• conditional 
• loop
• statement
• Function
• Modula
• Class and object
• File Handling
• oops
• Library
• regular expression
• Web Scraping



Introduction to Python

• Python is a general-purpose interpreted, 
interactive, object-oriented, and high-level 
programming language.

• It was created by Guido van Rossum during 
1985- 1990. 

• Like Perl, Python source code is also available 
under the GNU General Public License (GPL).

•



• Python is Interpreted − Python is processed at 
runtime by the interpreter. You do not need to 
compile your program before executing it. This is 
similar to PERL and PHP.

• Python is Interactive − You can actually sit at a 
Python prompt and interact with the interpreter 
directly to write your programs.

• Python is Object-Oriented − Python supports 
Object-Oriented style or technique of 
programming that encapsulates code within 
objects.



• Execute Python Syntax
• As we learned in the previous page, Python syntax can be executed by writing directly in the 

Command Line:
• print("Hello, World!")

Hello, World!
• Or by creating a python file on the server, using the .py file extension, and running it in the 

Command Line:
• C:\Users\Your Name>python myfile.py
• Python Indentation
• Indentation refers to the spaces at the beginning of a code line.
• Where in other programming languages the indentation in code is for readability only, the 

indentation in Python is very important.
• Python uses indentation to indicate a block of code.
• Example
• if 5 > 2:

print("Five is greater than two!")

• Python will give you an error if you skip the indentation:
• Example
• Syntax Error:
• if 5 > 2:

print("Five is greater than two!")



• The number of spaces is up to you as a programmer, but it has to be at least one.
• Example
• if 5 > 2:

print("Five is greater than two!")
if 5 > 2:

print("Five is greater than two!")
• You have to use the same number of spaces in the same block of code, otherwise 

Python will give you an error:
• Example
• Syntax Error:
• if 5 > 2:

print("Five is greater than two!")
print("Five is greater than two!")

• Python Variables
• In Python variables are created the moment you assign a value to it:
• Example
• Variables in Python:
• x = 5

y = "Hello, World!"



• Python has no command for declaring a variable.
• You will learn more about variables in the Python Variables chapter.
• Comments
• Python has commenting capability for the purpose of in-code 

documentation.
• Comments start with a #, and Python will render the rest of the line 

as a comment:
• Example
• Comments in Python:
• #This is a comment.

print("Hello, World!")
• Run example »
•

https://www.w3schools.com/python/python_variables.asp
https://www.w3schools.com/python/showpython.asp?filename=demo_comment


• Python Operators
• Operators are used to perform operations on variables 

and values.
• Python divides the operators in the following groups:
• Arithmetic operators
• Assignment operators
• Comparison operators
• Logical operators
• Identity operators
• Membership operators
• Bitwise operators



Java: java is statick typed programming language 

Eg:public s v m

{

Int a, b

a=2

b=3

Print(a+b)

}

Python :is a dynamic typed programming langa

Eg: a,b=10,20

z=a+b

print(“sum of two no”, z)

----------------------------

-----------------------------

Type (z)

---------

Int a                                                                                                      a=10

a=10                                                                                                      a=true

print a=true ------error in java int to bool conversion not possible in java or other langauge , but in 
python its dynamical typed             







Python Features

• Easy-to-learn – python has few keywords, simple 
structure, and a clearly defined syntax. this allows 
to pick up the language quickly.

• Easy-to-read – python code is more clearly 
defined and visible to the eyes.

• Easy-to-maintain – python’s source code is fairly 
easy-to-maintain.

• A broad standard library – Python’s bulk of the 
library is very portable and cross-platform 
compatible on UNIX, Windows.



• Interactive Mode – Python has support for an 
interactive mode  which allows interactive testing 
and debugging of snippets of code.

• Portable – Python can run on a wide variety of 
hardware platform and has the same interface on 
all platforms.

• Extendable – You can add low-level modules to 
the python interpreter. These modules enable 
programmers to add to or customize their tools 
to be more efficient.



Python interfaces

• IDLE – a cross-platform Python development 
environment

• PythonWin – a Windows only interface to 
Python

• Python Shell – running 'python' from the 
Command Line opens this interactive shell

• For the exercises, we'll use IDLE, but you can 
try them all and pick a favorite

http://en.wikipedia.org/wiki/IDLE_(Python)
http://sourceforge.net/projects/pywin32/


Example python 

• print (“Hello, Python!“)

• Hello World
print “hello world”

• Prints hello world to standard out

• Open IDLE and try it out yourself

• Follow along using IDLE





Datatype

1. String.

2. List.

3. Tuple.

4. Set

5. Dictionary.



Numbers -- Number data types store numeric
values. They are immutable data types, means
that changing the value of a number data type
results in a newly allocated object.
• For example −
• var1 = 1 
• var2 = 10
• You can also delete the reference to a number 

object by using the del statement.
• The syntax of the del statement is −
• del var1[,var2[,var3[....,varN]]]]



• Python support four different  numerical types:
1. int(signed integers)

2. Long(long integers)

3. Float(floating point real values)

4. Complex(complex numbers)

• Examples
• a=5

• Print(a,”is of type”, type(a))

a=2.0

Print(a,”is of type”, type(a))

a=1+2j

Print(a,”is complex number?”, isinstance(1+2j, complex))

• Here are some examples of numbers

• Int long               float    complex

10     51924361L      0.0       3.14j



Python- String
• Strings are amongst the most popular types in 

Python. We can create them simply by 
enclosing characters in quotes. Python treats 
single quotes the same as double quotes.

• For Examples:

Var1= ‘Hello World!’

Var2 = “python programmer ”





Accessing Values in Strings

• Python does not support a character type; these are 
treated as strings of length one, thus also considered a 
substring.

• To access substrings, use the square brackets for slicing 
along with the index or indices to obtain your 
substring. 

For example :
• var1 = 'Hello World!‘
• var2 = "Python Programming“
• print "var1[0]: ", var1[0]
• print "var2[1:5]: ", var2[1:5]





Examples

1.The Strip()– to remove any white space from 
the beginning or the end:

• a = “  hello,  world !”

• print(a.strip())

2. Len-The len() method returns the length of a 
string

a = “ Hello, world!”

Print(len(a))





3.lower() : the lower() method returns the string in lower 
case:
a = "Hello, World!"
print(a.lower())

4.Upper(): the upper() method returns the string in upper 
case:

a = "Hello, World!"
print(a.upper())

5. Replace
a = "Hello, World!"
print(a.replace("H", "J"))

6.Splite : a = "Hello, World!"
print(a.splite(", ")) 





Python- List

• The list is a most versatile datatype available 
in Python which can be written as a list of 
comma-separated values (items) between 
square brackets. Important thing about a list is 
that items in a list need not be of the same 
type.

• is a collection which is ordered and 
changeable. Allows duplicate members.

Examples



• thislist = ["apple", "banana", "cherry"]
print(thislist)

• Output: "apple", "banana", "cherry“

1. Access Items:

• thislist = ["apple", "banana", "cherry"]
print thislist[1]

2. Change the items:

thislist = ["apple", "banana", "cherry"]
thislist[1] = "blackcurrant"
print thislist

3. Add Items:

thislist = [“apple”, “banana”, “cherry”]

Thislist.append(“orange”)

Print thislist



Output(screenshot)



4. Insert: insert the item at the specifix index

thislist = [“123”, “456”, “768”]

thislist.insert(1, “987”)

print thislist

5. Remove:  Remove()  the  spceified items.

thislist = ["apple", "banana", "cherry"]
thislist.remove("banana")
print thislist

6. Delete: delete the spceified index

thislist = ["apple", "banana", "cherry"]
del thislist[1]
print thislist





7.pop() : this method removes the specified index, (or 
the last item if index is not specified):

thislist = ["apple", "banana", "cherry"]
thislist.pop()
print thislist

8.Clear():

thislist = ["apple", "banana", "cherry"]
thislist.clear()
print thislist



Copy a list

• You cannot copy a list simply by typing list2 = list1, 
because: list2 will only be a reference to list1, and 
changes made in list1 will automatically also be 
made in list2.

• There are ways to make a copy, one way is to use the 
built-in List method copy().

Example:

• Make a copy of a list with the copy() method:
• thislist = ["apple", "banana", "cherry"]

mylist = thislist.copy()
print(mylist)





9. Index:( syntax- list.index(elmnt)
What is the position of the value "cherry":

fruits = ['apple', 'banana', 'cherry‘]

x = fruits.index("cherry")



Python - Tuple

• A tuple is a sequence of immutable Python objects. 
Tuples are sequences, just like lists.

• are, the tuplesThe differences between tuples and 
lists cannot be changed unlike lists and tuples use 
parentheses, whereas lists use square brackets.

Create a Tuple:

tuple= (“apple”, “banana”, “orange”)

Print tuple





• Access Tuple items :

tuple =(“in”, are“”, “ we”)

Print tuple[1]

Adding, deleting, modification are not possible in tuple.

1.tuple = (1, 3, 7, 8, 7, 5, 4, 6, 8, 5)

x = tuple.count(5)

print(x)
2.tuple=(1,2,3,5,7,8,3,5,3,8)

x=tuple.index(3)

Print x    



Python - Set
• A set is a collection which is unordered and unindexed. In 

Python sets are written with curly brackets.

• Once the set is created you cannot change its items, but you 
can add new items.

• You cannot access items in a set by referring to an index, since 
sets are unordered the items has no index.

• But you can loop through the set items using a for loop, or ask 
if a specified value is present in a set, by using thein keyword.



• Examples:

Set = {“apple”, “banana”, “cherry”}

print set

2. set = {"apple", "banana", "cherry“}

for x in set:
print(x)

3. set ={"apple", "banana", "orange"} 
print("orange" in set)





4.Get the number of item in a set using length:

set={“apple”, “banana”, “orange”}

Print len(set)

5. Set ={"apple", "banana", "orange"}

set.remove(“orange”)

print set

6.Remove the item using Discard() method.

set = {"apple", "banana", "orange"}

set.discard(“orange”)

print set



7.set = {"apple", "banana", "cherry"}
x = set.pop()
print(x)
print set

8. set = {"apple", "banana", "cherry"}
set.clear()

print set

9. set = {"apple", "banana", "cherry"}
del.set
print set

10. x = {"apple", "banana", "cherry"}

y={“mango”, “orange”, “banan”}

z= x.differnce(y)

print z





1. x = {"apple", "banana", "cherry"}

y = {"google", "microsoft", "apple"}

x.update(y) 

print(x)

o/p: {'google', 'cherry', 'microsoft', 'apple', 'banana'}

2. x = {"apple", "banana", "cherry"}

y = {"google", "microsoft", "apple"}

z = x.intersection(y) 

print(z)

o/p :{ ‘apple’}



Python - Dictionaries

A dictionary is a collection which is unordered,
changeable and indexed. In Python dictionaries are
written with curly brackets, and they have keys and

values.

Example:

dict={“brand” : “ Ford”,

“model”: “mustang”,

“year”: 1993}

Print dict



1.Accessing Items: You can access the items of a dictionary by referring to its key 
name.

• Example:  1) x = thisdict["model"]
2. There is also a method called get()
x = thisdict.get("model")
2.Change Values: You can change the value of a specific item by referring to its 

key name.
thisdict = {

"brand": "Ford",
"model": "Mustang",
"year": 1964

}
thisdict["year"] = 2018

3. Dictionary Length:    print(len(thisdict))
4. Adding Items:   thisdict["color"] = "red"

print(thisdict)
5. Removing Items:  thisdict.pop("model")

print(thisdict)



The popitem() method removes the last inserted item

1.thisdict.popitem()

print(thisdict)
2. del thisdict["model"]

print(thisdict)

3. thisdict.clear()
print(thisdict)

4. mydict = thisdict.copy()
print(mydict)











Python-Conditional statment

• What are Conditional Statements?

• Conditional Statement in Python perform 
different computations or actions depending 
on whether a specific Boolean constraint 
evaluates to true or false. Conditional 
statements are handled by IF statements in 
Python.



• What is If Statement? How to Use it?
• In Python, If Statement is used for decision making. It 

will run the body of code only when IF statement is 
true.

• When you want to justify one condition while the 
other condition is not true, then you use "if 
statement".

• Syntax:
if expression:

Statement
else:

Statement
Examples:



• x, y = 2,8

if (x < y):

z= "x is less than y“

print (z)

• How to use "else condition"

• The "else condition" is usually used when you 
have to judge one statement on the basis of 
other. If one condition goes wrong, then there 
should be another condition that should 
justify the statement or logic.





Examples:

def main():

x, y = 2,8

if (x < y):

z= "x is less than y“

else:

z=“x is greater than y”

print (z)

If __name__ == “ “”main__”:

main()



‘

How to use "elif" condition

• To correct the previous error made by "else 
condition", we can use "elif" statement. By 
using "elif" condition, you are telling the 
program to print out the third condition or 
possibility when the other condition goes 
wrong or incorrect.

Examples:



x,y =8,8 

if(x < y):

st= "x is less than y“

elif (x == y):

st= "x is same as y“

else:

st="x is greater than y“

print(st)

Nested IF Statement:

Examples:



total = 100
#country = "US“
country = "AU“
if country == "US“
: if total <= 50:
print("Shipping Cost is $50")
elif total <= 100: 
print("Shipping Cost is $25")
elif total <= 150:
print("Shipping Costs $5")
else:
print("FREE") 
if country == "AU": 
if total <= 50: 
print("Shipping Cost is $100")
else:
print("FREE")



• Switch Statement:

A switch statement is a multi way branch 
statement that compare the value of a 
variable  the value specified in case 
statements.

Python language doesn’t have a switch 
statement.



Python- loop statment
• A loop statement allows us to execute a

statement or group of statements multiple times.

For Loop: Executes a sequence of statements
multiple times and abbreviates the code that
manages the loop variable.

• While Loop: Repeats a statement or group of
statements while a given condition is loop body.
TRUE. It tests the condition before executing
the

• Examplers:



1. Ex. For loop:   fruits = ["apple", "banana", "cherry"]

for x in fruits:
print(x)

2. ex. While loop:

i = 1
while i < 6:

print(i)
i += 1



Python-loop control statement

• Break Statement: The break statement we can 
stop the loop before it has looped through all 
the items:

Examples:

X=[“ apple”, “orange”, “ banana”]

for a in x:

Print (a)

If a ==“orange”:

Break

Print (a)



• Continue Statement:With the continue statement we can 
stop the current iteration of the loop, and continue with the 
next:

Examples:
fruits = ["apple", "banana", "cherry"]

for x in fruits:
if x == "banana":
continue

print(x)



• Pass Stat: The pass statement in Python is used when a 

statement is required syntactically but you do not want any 
command or code to execute.

• Example:

• fruits = ["apple", "banana", "cherry"]
for x in fruits:
if x == "banana":
pass

print(x)



Python- Function

• Function: is a block of code which  only  runs when it is called. 

And you can pass the data known as parameters, into a function.

• A function can return data as a result.

• In python  a function defined using the def keyword .

Examples:

def my_function():
print("Hello from a function")

• Calling a Function

• To call a function, use the function name followed by parenthesis:

• def my_function():
print("Hello from a function")
my_function()



Parameters
• Information can be passed to functions as parameter.

• Parameters are specified after the function name, inside the 
parentheses. You can add as many parameters as you want, 
just separate them with a comma. 

• Examples:

• The following example has a function with one parameter 
(fname). When the function is called, we pass along a first 
name, which is used inside the function to print the full name:



• def my_function(fname):
print(fname + " Refsnes")

my_function("Emil")
my_function(“Twitter")
my_function("Linus")

• Output:



The return Statement
• The statement return [expression] exits a function, optionally passing back 

an expression to the caller. A return statement with no arguments is the 
same as return None.

Example:
def sum( arg1, arg2 ): 

# Add both the parameters and return them." 

total = arg1 + arg2 

print "Inside the function : ", total 

return total;

# Now you can call sum function 

total = sum( 10, 20 );

print "Outside the function : ", total

OutPut: Inside the function : 30

Outside the function : 30



Python –OOPs Concepts

Python class and objects:
A blueprint created by a programmer for an object. This defines 

a set of attributes that will characterize any object that is 
instantiated from this class.

• Python is an object oriented programming language.
• Almost everything in Python is an object, with its properties 

and methods.
• A Class is like an object constructor, or a "blueprint" for 

creating objects.
Create a Class: To create a class, use the keyword class:
Example:          class MyClass:

x=5:



• Object — An instance of a class.

• Examples:

Class Shark:

def swim(self):

print(“thr shark is swimming”)

def  be_awesome(self):

print(“the shark is being awwsome”)

#o object creating

A= Shark()

A.swim()

A.be_awesome()



The constructor method

• The constructor method is used to initialize data. It is run as soon as an 
object of a class is instantiated. Also known as the __init__ method, it will 

be the first definition of a class and looks like this:

• Examples:

class Shark:

def __init__(self, name): 

self.name = name 

def swim(self): 

print(self.name + " is swimming.") 

def be_awesome(self):

print(self.name + " is being awesome.")



def main():

# Set name of Shark object 

q = Shark("Sammy")

q.swim() 

q.be_awesome()

if __name__ == "__main__": main() 

Output:     q is swimming. 

q is being awesome.



Python- Inheritance

• Inheritance allows us to define a class that inherits all the 
methods and properties from another class.

• Parent class is the class being inherited from, also called base 
class.

• Child class is the class that inherits from another class, also 
called derived class.

Create a Parent Class:

Any class can be a parent class, so the syntax is the same as
creating any other class

Examples:



• class Person:
def __init__(self, fname, lname):
self.firstname = fname
self.lastname = lname

def printname(self):
print(self.firstname, self.lastname)

#Use the Person class to create an object, and then execute the 
printname method:
x = Person(“john", “Doe")
x.printname()



Create a Child class:

Examples:
• To create a class that inherits the functionality from another 

class, send the parent class as a parameter when creating the 
child class.

• Create a class named Student, which will inherit the 
properties and methods from the Person class.

class Student(Person):
pass



Python - Encapsulation

Encapsulation means that the internal representation of on

object is generally hidden from view outside of the object’s 

definition.
Encapsulation:we can restrict access to methods and variables. 

This prevent data from direct modification which is called 
encapsulation

In Python, we denote private attribute using underscore as prefix
i.e single “ _ “ or double “ __“.



• Example:
class Computer:
def __init__(self):
self.__maxprice = 900    
def sell(self):       
print("Selling Price: {}".format(self.__maxprice))    
def setMaxPrice(self, price):        
self.__maxprice = price
c = Computer()c.sell()
# change the price
c.__maxprice = 1000
c.sell()
# using setter function
c.setMaxPrice(1000)
c.sell()



Python- Regular Expr

• A RegEx, or Regular Expression, is a sequence of characters 
that forms a search pattern.

• RegEx can be used to check if a string contains the specified 
search pattern.

RegEx Module

• Python has a built-in package called re, which can be used to 
work with Regular Expressions.

• Import the re module

import re

RegEx in Python:
When you have imported the re module, you can start using regular 

expressions:



• Example

Search the string to see if it starts with "The" and ends with 
"Spain"

import re
txt = "The rain in Spain"
x = re.search("^The.*Spain$", txt)



• RegEx Functions:

1. Findall:  Returns a list containing all matches

2. Search: Returns a match object if there is a 
match anywhere in the string.

3. Split: Returns a list where the string has been 
split at each match

4. Sub: Relplaces one or many matches with a 
string.



Examples:
1. import re

str = "The rain in Spain"
x = re.findall("ai", str)
print(x)

• import re
str = "The rain in Spain"
x = re.search("\s", str)
print("The first white-space character is located in position:", x.start())



3.import re
str = "The rain in Spain"
x = re.split("\s", str)
print(x)

Output:====

4. import re

str = "The rain in Spain"
x = re.sub("\s", "9", str)

print(x)



Python –File Handling

• File handling is an important part of any web application.

• Python has several functions for creating, reading, updating, and deleting 
files.

• The key function for working with files in Python is the open() function.

• The open() function takes two parameters; filename, and mode.

• There are four different methods (modes) for opening a file:

• "r" - Read - Default value. Opens a file for reading, error if the file does not 
exist

• "a" - Append - Opens a file for appending, creates the file if it does not 
exist

• "w" - Write - Opens a file for writing, creates the file if it does not exist

Syntax: To open a file for reading it is enough to specify the name of the file

f = open("demofile.txt")



• Open a file on the server: assume we have the following 

file, located in the same folder as pythom.

demofile.txt

“  Hello! Welcome to demofile.txt

this file is for testing purposes.

Good Luck”

• To open the file, use the built-in open() function.

• The open() function returns a file object, which has 
a read() method for reading the content of the file

Examples:



1.f = open("demofile.txt", "r")
print(f.read())

2. f = open("demofile.txt", "r")

print(f.readline())
f.close()



Python- file write

• To write to an existing file, you must add a parameter to 
the open() function:

• "a" - Append - will append to the end of the file
• "w" - Write - will overwrite any existing content
Examples:f = 

open("demofile2.txt", "a")
f.write("Now the file has more content!")
f.close()

#open and read the file after the appending:
f = open("demofile2.txt", "r")
print(f.read())



Example1:open the file "demofile3.txt" and overwrite the content:

f = open("demofile3.txt", "w")
f.write("Woops! I have deleted the content!")
f.close()

#open and read the file after the appending:
f = open("demofile3.txt", "r")
print(f.read())



• Python-delete file:
To delete a file, you must import the OS module, and run it’s os.remove() 

function.

Example:    import os

os.remove(“demofile.txt”)

Check if File Exist:

Check if file exist, then delete it:

import os

if os.path.exists(“demofile.txt”):

os.remove(demofile.txt”)

else:

print(“The file does not  exist”)



To delete an entire folder, use the os.rmdir() method:

Example:
import os
os.rmdir("myfolder")



Web Scraping

• Why Web Scraping?

Web scraping is used to collect large information from

websites. But why does someone have to collect such large data

from websites? To know about this, let’s look at the applications

of web scraping:

• Price Comparison: Services such as ParseHub use web scraping to collect 
data from online shopping websites and use it to compare the prices of 
products.

• Email address gathering: Many companies that use email as a medium for 
marketing, use web scraping to collect email ID and then send bulk emails.

• Social Media Scraping: Web scraping is used to collect data from Social 
Media websites such as Twitter to find out what’s trending.

• Research and Development: Web scraping is used to collect a large set of 
data (Statistics, General Information, Temperature, etc.) from websites, 
which are analyzed and used to carry out Surveys or for R&D.



• What is web scraping?
Web scraping is an automated method used to extract large
amounts of data from websites. The data on the websites are
unstructured. Web scraping helps collect these unstructured
data and store it in a structured form.

How does web scraping works?
• To extract data using web scraping with python, you need to follow 

these basic steps:
• Find the URL that you want to scrape
• Inspecting the Page
• Find the data you want to extract
• Write the code
• Run the code and extract the data
• Store the data in the required format



• Demo: Scraping Flipkart Website
• Step 1: Find the URL that you want to scrape
• For this example, we are going scrape Flipkart website to 

extract the Price, Name, and Rating of Laptops. The URL for 
this page is https://www.flipkart.com/laptops/~buyback-
guarantee-on-laptops-
/pr?sid=6bo%2Cb5g&uniqBStoreParam1=val1&wid=11.pro
ductCard.PMU_V2.

• Step 2: Inspecting the Page
• The data is usually nested in tags. So, we inspect the page 

to see, under which tag the data we want to scrape is 
nested. To inspect the page, just right click on the element 
and click on “Inspect”.

https://www.flipkart.com/laptops/~buyback-guarantee-on-laptops-/pr?sid=6bo,b5g&uniqBStoreParam1=val1&wid=11.productCard.PMU_V2


• When you click on the “Inspect” tab, you will see a “Browser Inspector 
Box” open.

• Step 3: Find the data you want to extract
• Let’s extract the Price, Name, and Rating which is nested in the “div” tag 

respectively.
•



• Step 4: Write the code
• First, let’s create a Python file. To do this, open the terminal in Ubuntu and type 

gedit <your file name> with .py extension.
• I am going to name my file “web-s”. Here’s the command:

• gedit web-s.py
• Now, let’s write our code in this file.
• First, let us import all the necessary libraries:

from selenium import webdriver
from BeautifulSoup import BeautifulSoup

import pandas as pd
• To configure webdriver to use Chrome browser, we have to set the path to 

chromedriver

driver = webdriver.Chrome("/usr/lib/chromium-browser/chromedriver")



products=[] #List to store name of the product
prices=[] #List to store price of the product
ratings=[] #List to store rating of the product
driver.get("https://www.flipkart.com/laptops/~buyback-guarantee-on-laptops-

/pr?sid=6bo%2Cb5g&uniq"
content = driver.page_source
soup = BeautifulSoup(content)
for a in soup.findAll('a',href=True, attrs={'class':'_31qSD5'}):
name=a.find('div', attrs={'class':'_3wU53n'})
price=a.find('div', attrs={'class':'_1vC4OE _2rQ-NK'})
rating=a.find('div', attrs={'class':'hGSR34 _2beYZw'})
products.append(name.text)
prices.append(price.text)
ratings.append(rating.text) 

https://www.flipkart.com/laptops/


• Step 5: Run the code and extract the data
• To run the code, use the below command:

python web-s.py
• Step 6: Store the data in a required format
• After extracting the data, you might want to store it in a 

format. This format varies depending on your requirement. 
For this example, we will store the extracted data in a CSV 
(Comma Separated Value) format. To do this, I will add the 
following lines to my code:

df=pd.DataFrame({'ProductName':products,'Price':prices,'Ra
ting':ratings}) 

df.to_csv('products.csv', index=False, encoding='utf-8')



• Now, I’ll run the whole code again.

• A file name “products.csv” is created and this file contains the 
extracted data.














